

Li-Ion Intelligent and Safe Battery Technology Innovation Leader

Li-Ion Polymer Intelli-Pack® Battery

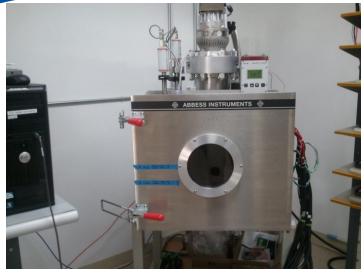
For Space Launch Vehicles, Missiles, Hypersonic Vehicles, ISS, Aircraft, Small Satellites, and UAVs

An Intelligent Power System Technology

NASA MSFC Li-Ion Battery Workshop Edmund Burke, SIL CEO Nov. 17, 2020

SIL Aerospace Small Business

- Primary business is Space R&D and missile flight unit products for Prime Contractors and Federal Agencies including AFSPC, SMC, MDA, AFRL, NAVAIR, DARPA and NASA
- AS9100D QMS to design, manufacture and environmental test of Avionics, AFTS, GPS Tracking, and Li-Ion Battery Flight Units
- DCAA Approved Accounting System
- DCMA Approved Inventory System
- DCMA Master Inspection Points (MIPS) at SIL for Missile Flight Units delivery
- SIL is located in Santa Maria, CA near Vandenberg AFB



Space Qual Environmental In-House Test Lab Capability

Thermal Vac Chamber

Vib Machine, 1-25 lbs units up to 40 Grms

SIL Patent # 9,748,541 B2

Thermal Cycle

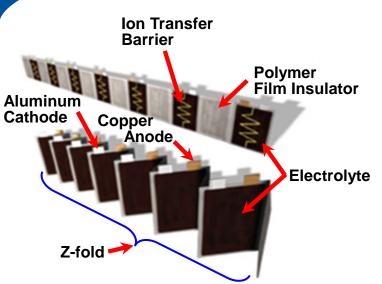
(one)

Li-lon Polymer Intelli-Pack® FTS, Avionics and Telemetry Battery Technology USPTO Patent # 9,748,541B2

SIL Li-Ion Intelli-Pack[®] Battery Product Line For Missile, Rocket, Satellite, and Aircraft Applications

Li-Ion Polymer Intelli-Pack® Battery Product Line 2011-Current

Li-Ion Polymer Intelli-Pack® Battery Products	TRL
8S1P, 2 Ah FTS 5.7"L x 3.25"W x 3"H, 2.7 lbs	TRL-8 (2020) TRL-9 (2021)
8S1P, 2.1 Ah FTS 6.36"L x 3.75"W x 1.5"H, 1.95 lbs	TRL-7 (2020) TRL-9 (2021)
8S1P, 3.3 Ah FTS/TM 6.75"L x 4"W x 2.8"H, 3.25 lbs	TRL-7 (2020)
8S1P, 5 Ah Avionics/TM 8.7"L x 3.3"W x 4.3"H, 5.75 lbs	TRL-7 (2020)
8S2P, 20 Ah Avionics/TM 9"L x 9"W x 3.75"H, 14.5 lbs	TRL-9 16 Missions (2013-2020), 100% Success
8S2P, 52 Ah Spacecraft 14"L x 7"W x 5.5"H, 26.2 lbs	TRL-8 (2020) TRL-9 (2021)
8S2P, 150 Ah Spacecraft 11.7"L x 11.5"W x 8.5"H, 75 lbs	TRL-5 (2020)



Li-Ion Polymer Intelli-Pack® Battery Attributes

- Advanced BMS within the battery that automatically protects (overvoltage, undervoltage, short circuit and thermal protection), balances and monitors every cell to ensure safety
- Advanced BMS within the battery with high precision battery and cell voltage, current and temperature measurements with instant viewing with Windows GUI and Data Logger for turn-key battery operations, and real-time battery telemetry data downlink from Space Launch Vehicle, Missile or Satellite
- Turn-Key Battery Operations by technician to reduce life cycle cost
- Li-Ion Polymer Z-fold pouch NMC cells have high energy density (170-250 Wh/Kg) and very low internal resistance (1/10th resistance of 18650 Jelly Roll Li-Ion Cell) that enables high discharge current capability (2C to 30C), rapid recharge (< 1 hour from battery dead state with 1C charge current) and low cell self heating
- No Liquid Electrolyte Leakage
- SIL Battery Packaging works in extreme thermal cycle/vacuum (-40C to +71C, 1*10-5 Torr), Shock (1000-2000G) & Vibration Environments (60 RMS)

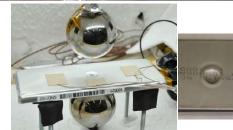
Li-Ion Z-Fold Cell Pouch Technology

- COTS Li-Ion Polymer Z-Fold cell mass-scale suppliers
- 170 to 250 Wh/Kg Energy Density (LCO & NMC Li-Ion Cells)
- Capacities in .5 to 200 Amp-Hours and 10 Year Life
- Used in Chevy Bolt, Electric Vehicles, UAS, Launch Vehicles, Missiles, SmallSats, etc.
- Very low cell internal resistance (10Amp-Hr Cell, < 3 mΩ) allowing high current discharge (5-30C) and rapid recharge (< 1 hour, 1C Charge) and minimal heat rise

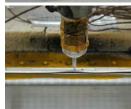
Cell components:

- Cathode (-):
 - Lithium-Cobalt-Oxide (LCO)
 - Li-Nickel-Manganese-Cobalt Oxide (NMC) on aluminum; 2-3x Cycle Life of LiCoO2 cathodes
- Anode (+): Carbon (Graphite) on copper
- Electrolyte (gel):
 - LiPF₆ in ethyl carbonate (EC) + dimethyl-carbonate (DMC) + small amount ethyl-methyl-carbonate (EMC)

Li-Ion Polymer Z-Fold Cell S9310 Destructive Test Summary


- Hot Plate with cell between constrained plates
 - Thermal Runaway occurred at 170C
- Overcharge with cell between constrained plates
 - 5.3Vdc at 1C charge rate venting occurred
 - Added 30 AH additional capacity to 10 AH cell
 - 5.3Vdc at 2C charge rate cell went into thermal runaway (added 30AH additional capacity to 10AH Cell)

Pinch Test ~1500lbs of force on broad face of cell


- No change in open circuit V and/or temperature
- Slight difference in capacity after 107 charge and discharge cycles
- Broad Face Indent (Metal and Ceramic Tips)
 - Internal short circuit induced at 57.6 lbf
 - Induced a thermal runaway condition
- Narrow Face Indent (Ceramic Tip)
 - Internal short circuit induced at 37 lbf
 - Induced a thermal runaway condition

Cell Destructive Testing by Aerospace Corp.

Battery Design PPE Overview

Protect, Prevent and Enclose (PPE) Technologies are employed to stop cell failure propagation, limit cell-to-cell thermal transport, and safely contain flames and debris.

- <u>Protect</u> with SIL's advanced BMS housed within each Li-Ion Intelli-Pack[®] battery
 - Real-time monitoring of all cells and cell balancing during charge to assure safety
 - Protects cells against Overvoltage, Undervoltage, Over Current, Short Circuit and OOT Thermal
 - Arrayed temperature sensing to detect hot-spots and temperature events on cells
 - Customizable, programmable, and designed to trigger prior to hazardous situations
- <u>Prevent</u> with semi-active Thermal Isolating Phase-change (TIP) material for large format batteries
 - TIP material is assembled between each cell pair and around the cell pack
 - Thermally isolating characteristics isolate cell pairs from each other during normal operation
 - Phase change characteristics absorb heat energy if a cell-pair goes into thermal runaway
 - Prevents cascading cell failures, limits thermal propagation, and stifles thermal runaway reactions
- <u>Enclose</u> with SIL's robust and flight proven battery housing
 - Cell pack is further insulated with UL 94 V-0 fire resistant foam to smother any cell expulsion
 - Housing can withstand a cell failure without flame or debris expulsion
 - Heritage battery housing keeps cells safe in highly demanding aerospace environments
 - Tested in high Shock, Vibe, Thermal, Vacuum, Acceleration, ESD, and EMI/EMC environments

SIL Li-Ion Polymer Intelli-Pack® Battery System (33.6Vdc @ 20 AH)

Weight: 14.5 lbs

Size: 9" L x 9" W x 3.75" H

RS-422 and MIL-STD 1553B Data Outputs

MDA Missile and RV Successful flight history (2013 – 2019): 13 of 13

Shock Video – 20Ah Missile Battery

Thermal Cycle: -10C to +55C (24 Cycles), 2 hour dwells

```
Thermal Vacuum: 1*10-5 Torr, -10C to +55C (4 cycles)
```

Random Vibration: 16.4 grms, 3 mins per XYZ axis 0 to 2000 Hz

Sine Vibration: 70 and 100Hz, 18G 500 and 700Hz, 7.8G 1100 and 1400Hz, .6G

Shock:	Freq. (Hz)	Shock Level (g)
	100	226
	1015	400
	1800	735
	10000	735

Three Hits: +/- XYZ Axis

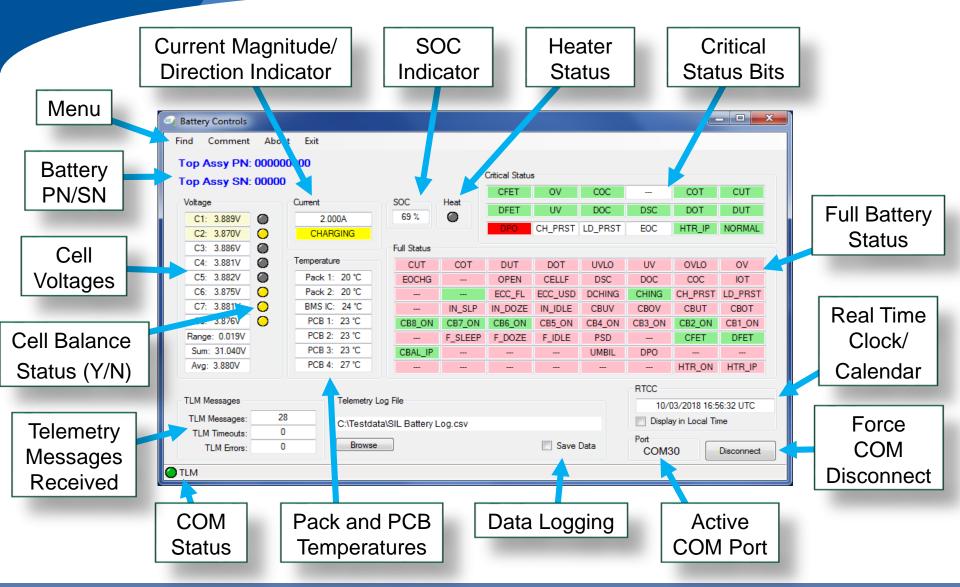
MIL-STD 461 G EMI/EMC: RE102, CE101, CE102, CS-114, CS115, CS116, RS103, CE-07

DoD Guidelines and Standards for Li-Ion Battery Design and Space Qual

- NAVSEA 9310-AQ-SAF-010
 - Technical Manual for Navy Lithium Battery Safety Program Responsibilities and Procedures
- SMC-S-018, Li-Ion Battery Design Guideline for Launch Vehicle Applications
- SMC-S-016, Test Requirements for Launch, Upper-Stage and Space Vehicles
- RCC 319, Section 4.26 Li-Ion FTS Batteries
 - Cell Screening requirements and Range Safety Space Qual for launch vehicle applications
- RCC 324-01, Li-Ion Batteries for Avionics and Telemetry Systems
- BMS designed to pass UN38.3 Tests 1 thru 5, and 7

Advanced BMS within Batteries

Battery telemetry at 1 Hz rate

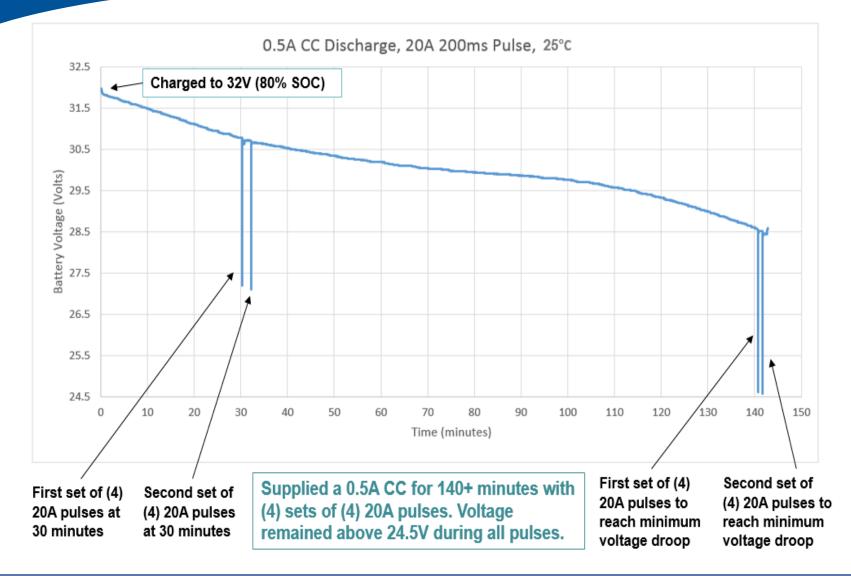

- Voltages: 1 mV resolution, pack & cells
- Current: 1 mA resolution, battery level
- Temperature: 1°C resolution, arrayed on cells
- SOC and SOH
- Diagnostics flags
- Protection Features
 - Charge
 - Over voltage, over current
 - Lockout, cell voltage equalization
 - Discharge
 - Under voltage, over current,
 - Short circuit, lockout, pulse programmable
 - Temperature
 - Over/under protection for all operations
 - Autonomous heaters for cold operations
- Autonomous Built-In-Test
 - Verifies battery is functional
 - Periodically updates SOC, SOH
- Min/Max Data Recorder (Black Box)
 - Saves battery data in event of fault or failure

- Standby Mode
 - Maximizes charge retention when exposed to parasitic (90mA) loads
 - < 300 Ohm (programmable) load required to enter operational mode
- Programmable BMS Agnostic to Cell Chemistry
- Automatic Cell Balancing
- Automatic Heater Control with programmable control from 0 to -55 Celsius

Battery Management Systems Intelligent Graphical User Interfaces

SIL Patent # 9,748,541 B2

2AH LiPo FTS Battery with internal BMS



Li-Ion Polymer Intelli-Pack® 2Ah FTS Battery Specification

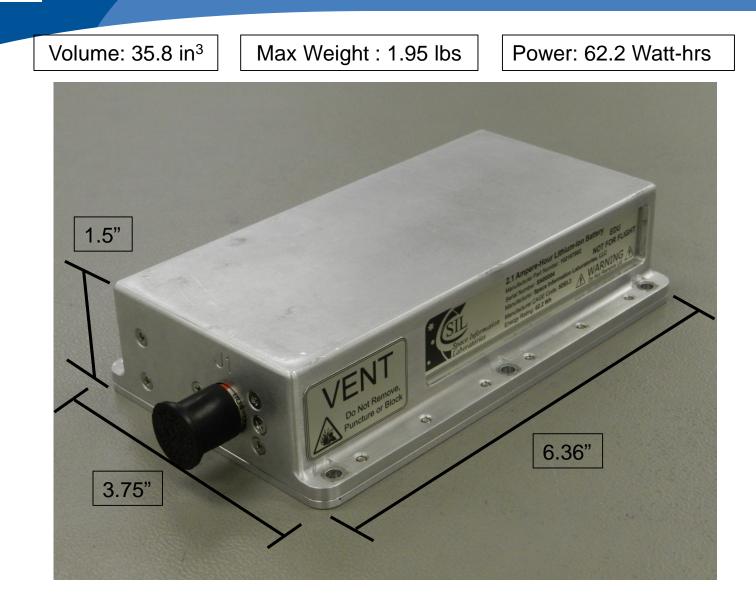
Battery Specification	SIL Li-Ion Intelli-Pack® 2Ah 8S1P FTS Battery	
Voltage (J1 Out)	33.6Vdc (Fully Charged)	
Capacity	2 Ah at 1C Continuous Discharge (33.6Vdc to 22.4 V dc)	
	1.9 Ah at 5C Continuous Discharge (33.6Vdc to 22.4 Vdc)	
	1.6 Ah at 15C Continuous Discharge (33.6Vdc to 22.4 Vdc)	
Cycle Life	1000 Cycles to 80% Capacity at 1C discharge and charge	
Weight Max	2.7 lbs.	
Dimensions	4.5" L x 3.25" W x 3" H (1/2 " mounting flanges)	
Pulse Load	60 Amps (30C), < 200 msecs pulse	
Steady State Load	30 Amps (15C)	
Telemetry and Real-time Cell	RS-422, etc.	
Monitoring (J1 Out)		
Protection	Full Cell Protection (Overvoltage, Undervoltage, Temperature and Short Circuit) - Disabled in Flight Override Mode	
Space Qual Temp Range	-10C to +55C (Battery)	
	-40C to + 55C (Battery with DC Kapton heaters)	
	-34C to +71C (Battery BMS PCBA)	
	Operating Range: -40C to +71C	

2Ah FTS Li-Ion Battery Continuous and Pulse Current Performance

2 Ah FTS & 5 Ah TLM/FTS Li-Ion Battery Qual Test Levels

PCBA Level Tests	Levels	
Workmanship Thermal Cycle:	1 Cycle: -40° C to $+71^{\circ}$ C	
Verifies PCBA has no	Non-operational	
outstanding issues		
Operational Thermal Cycle:	24 Cycles:	
Thermally stresses the PCBA at	1^{st} & 24^{th} Cycle: -40° C to $+55^{\circ}$ C	
minimum and maximum	2 hour soak times	
predicted operational	Real time telemetry throughout	
temperatures	Interim Cycles: -40° C to $+50^{\circ}$ C	
	1 hour soak times	
	Real time telemetry throughout	
Burn-In:	48 hour soak: +71°C	
Test PCBA at maximum	5 A discharge current throughout	
predicted operation temperature	Real time telemetry throughout	

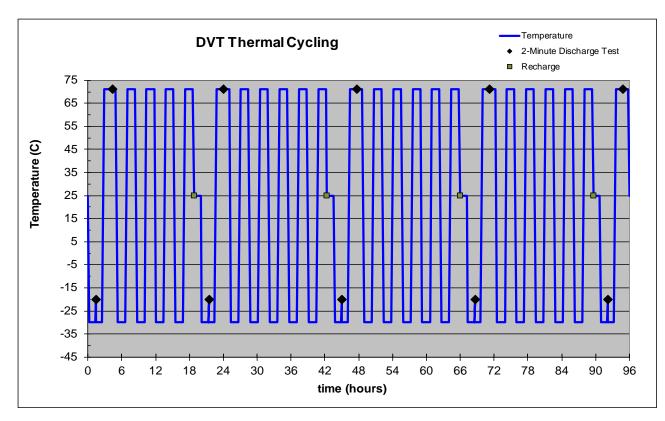
Battery Level Tests	Levels	
Thermal Cycle:	24 Cycles total	
Thermally stresses the Battery	$1^{st} \& 24^{th}$ Cycle: -40° C to $+55^{\circ}$ C	
at minimum and maximum	Real time telemetry throughout	
predicted operational	Capacity tests at each extreme	
temperatures	Interim Cycles: -10° C to $+50^{\circ}$ C	
	Real time telemetry throughout	
Vacuum:	24 hour soak: Pressure below 1x10 ⁻⁵ Torr	
Tests battery operation at	Capacity test at vacuum pressure	
vacuum conditions		



2 Ah FTS & 5 Ah TLM/FTS Li-Ion Battery Qual Test Levels (Cont)

Operational Shock: Subjects battery to maximum predicted shock levels in XYZ	Combined FTS Shock Profile Freq (Hz) SRS (g) (Q=10) 20 10 100 100	SRS Response, 5% Damping 1000.000 00.000 00 00 00
Axis	*Upper shock levels were limited by SIL test equipment	0 10.000 0 1000 0 0.100 0 0.001 Ch1 10 0 1000 Ch1 1000 Frequency (Hz) 1000
Operational Random Vibration (16.4 GRMS): Subjects battery to maximum predicted random vibration levels in XYZ Axis, 3 minutes per axis	Combined FTS Op-Vibe Profile Freq (Hz) Level (g) 20 0.04 50 1.1 80 1.1 182.4 0.2 800 0.2 1525.5 0.06 2000 0.06	Acceleration Spectral Density
Operational Sine Vibration: Subjects battery to maximum predicted sine vibration levels in XYZ axis, 3 minutes per axis	Combined FTS Op-Sine Vibe Profile Freq (Hz) Amplitude (g) 70 18.4 100 18.4 170 3.2 240 3.2 435 0.2 550 0.2 600 7.8 750 0.68 980 0.68 1020 0.068 1020 0.06 1400 0.6 1450 0.04 2000 0.04	Accted in hole

2.1 Ah LiPo FTS Battery SWAP


2.1 Ah LiPo FTS Battery Spec Sheet

Battery Specification	SIL 2.1 Ah 8S1P FTS LiPo Battery	
Cell Chemistry	173 Wh/Kg, NMC	
Voltage Range (J1 and J2	33.6 – 22.4 Vdc	
Out)		
Capacity (BOL)	2.1 Ah at C/2 continuous discharge	
	1.8 Ah at 2C continuous discharge	
Cycle Life	1,000 Cycles to 80% capacity at 1C discharge and	
	discharge, 100% DOD	
Maximum Weight	1.95 lbs	
Dimensions	6.36 inch (L) by 3.75 inch (W) by 1.5 inch (H)	
Steady State Load	2A (1C)	
Pulse Load	6 A (3C), < 10 s pulse	
Telemetry and Monitoring	Battery telemetry output at 1 Hz; RS-422	
Protection	Cell protection, disabled in Discharge Protection Override	
Operational Temp Range	-20 to +71°C (-4 to +160 °F), No Heater	
Temp Range with Heaters	$-40 \text{ to } +71^{\circ}\text{C} (-40 \text{ to } +160^{\circ}\text{F})$	

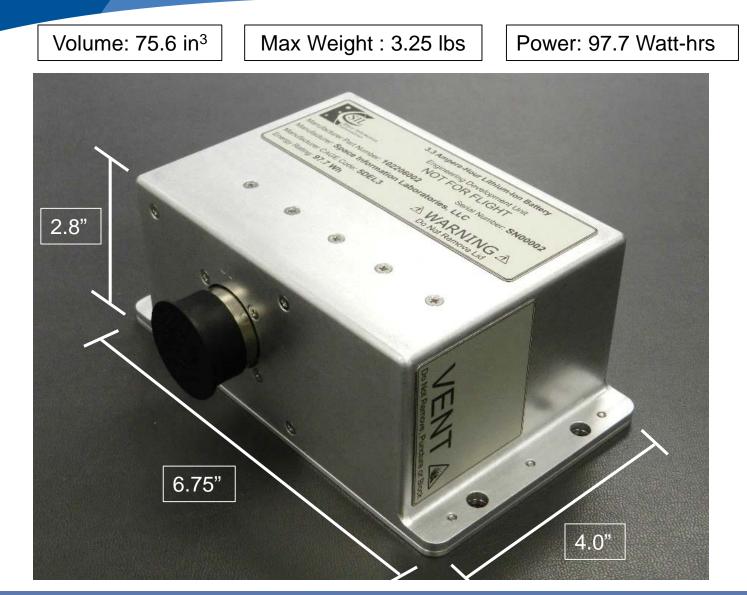
Space Information Laboratories, LLC Proprietary

- Met all RCC 319 requirements during thermal cycle: 24 Cycles, +71°C to -30°C
- 2-minute discharge tests at hot and cold dwells, 10 times throughout test
- Two Qual DVT Units successful post test functional and capacity test show no change it capability

- Subjected to 60-minute thermal random vibration (RCC 319, 3 mins per Axis only)
- 29.34 G_{rms} in Z-axis, 12.05 G_{rms} in X & Y axis
- Tested at +71°C and -10°C in all axis
- Supplied modified mission load profile throughout
- Two Qual DVT Units successful post test functional and capacity test show no change in capability

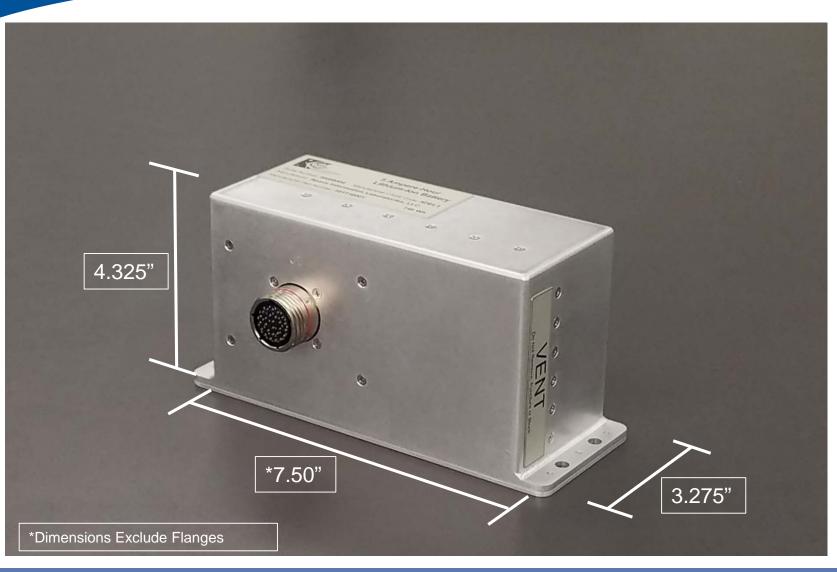
Acceleration Spectral Density	X & Y Axis Qua	(MPE + 10dB)	Z Axis Qual (MPE + 10dB)
	Frequency	ASD/PSD	Frequency	ASD/PSD
1x10 ¹ Demand 1x10 ¹ C-X	(Hz)	(G2/Hz)	(Hz)	(G2/Hz)
Line C-X		. ,	10	0.6275
	10	0.1004	40	0.6275
1x10 ⁻² 1x10 ⁻³ 1x10 ⁻⁴	20	0.1004	55	12.55
	27	0.753	65	12.55
1x10 ⁻³	32	0.753	80	2.008
	45	0.0753		
	55	0.3012	88	4.016
	65	0.3012	100	4.016
1x10 ⁻⁵	80	0.1255	150	0.502
and a second sec	100	0.1255	170	0.502
1x10 ⁻⁶	115	0.251	200	1.506
	150	0.251	250	0.502
1×10 ⁻⁷	200	0.0753	285	0.502
10 100 2000 1	290	0.0753	320	1.255
Frequency (Hz)	330	0.1757	400	0.2008
	400 650	0.0502	500	0.2008
	800	0.0302	555	0.1004
	1150	0.0251	1140	0.1004
	1375	0.08785		
	1800	0.08785	1290	0.3765
	2000 GRMS	0.03765	1380	0.3765
	GRMS	- 12.05	1520	0.1255
			2000	0.1255

2.1Ah Qual DVT Thermal SRS Shock Test


- Subjected to thermal SRS shock
- Wing deployment shock of >485 g in all axis
- Tested at +71°C and -10°C in all axis
- Voltage monitored throughout: no dropouts
- Two Qual DVT Units successful post test functional and capacity test show no change in capability

SIL Patent # 9,748,541 B2

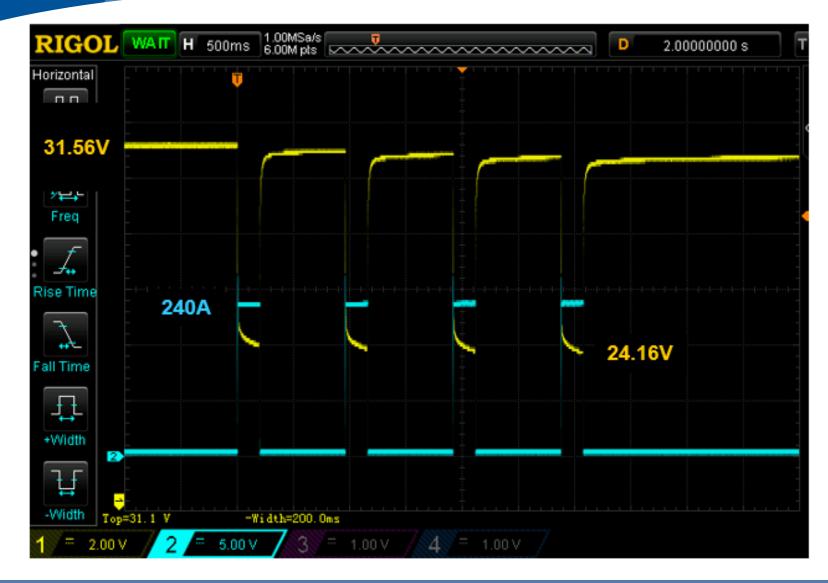
3.3AH FTS LiPo Battery with internal BMS



3.3 Ah LiPo FTS / TLM Battery Spec Sheet

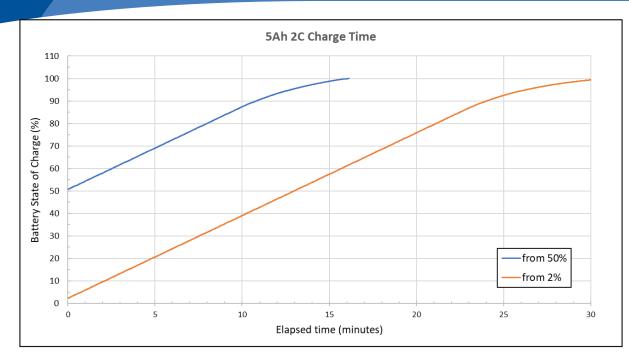
Battery Specification	SIL 3.3 Ah 8S1P Li-Po Battery
Cell Chemistry	Lithium Nickel Manganese Cobalt Oxide (NMC)
Voltage Range (J1 and J2 Out)	33.6 – 22.4 Vdc
Capacity (BOL)	3.3 Ah at 0.5 C continuous discharge
	3.1 Ah at 1.0 C continuous discharge
	2.8 Ah at 2.0 C continuous discharge
Cycle Life	1,000 Cycles to 80% capacity at 1C charge &
	discharge, 100% DOD
Maximum Weight	3.25 lbs
Dimensions	6.75 inch (L) by 4.00 inch (W) by 2.80 inch (H)
Steady State Load	6.6 A (2C)
Pulse Load	16.5 A (5C), <10 s pulse
Telemetry and Monitoring	Battery telemetry output at 1 Hz; RS-422
Protection	Cell protection, disabled in Discharge Protection
	Override
Operational Temp Range	$-10 \text{ to } +60^{\circ}\text{C} (+14 \text{ to } +140^{\circ}\text{F})$, No Heater
Temp Range with Heaters	$-40 \text{ to } +71^{\circ}\text{C} (-40 \text{ to } +159.8^{\circ}\text{F})$

5Ah FTS/TLM Li-Ion Battery with internal BMS



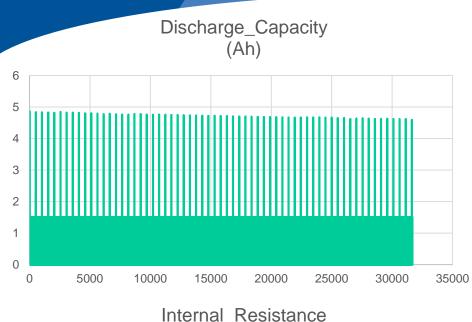
Li-Ion Polymer Intelli-Pack® 5Ah FTS/TLM Battery Specification

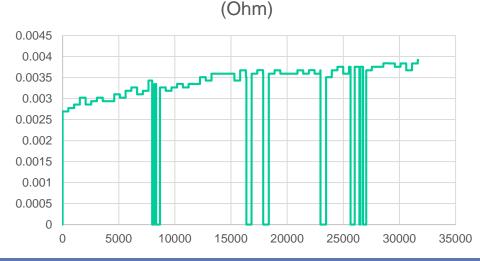
Battery Specification	SIL Li-Ion Intelli-Pack® 5Ah 8S1P TM/Avionics/FTS Battery	
Voltage (J1 Out)	33.6Vdc (Fully Charged)	
Capacity	5 Ah at 1C Continuous Discharge (33.6Vdc to 22.4 V dc)	
	4.75 Ah at 10C Continuous Discharge (33.6Vdc to 22.4 Vdc)	
	4 Ah at 30C Continuous Discharge (33.6Vdc to 22.4 Vdc)	
Cycle Life	1000 Cycles to 80% Capacity at 1C discharge and charge	
Weight Max	5.75 lbs.	
Dimensions	7.50" L x 3.275" W x 4.325" H (1/2 " mounting flanges)	
Pulse Load	100 Amps (20C), < 200mecs second pulse	
Steady State Load	30 Amps (6C)	
Telemetry and Real-time	RS-422, etc.	
Cell Monitoring (J2 Out)		
Protection	Full Cell Protection (Overvoltage, Undervoltage, Temperature and Short Circuit) - Disabled in Flight Override Mode	
Space Qual Temp Range	-10° C to $+55^{\circ}$ C (Battery without heaters)	
	-40° C to $+55^{\circ}$ C (Battery with DC Kapton heaters)	
	-40°C to +71°C (Battery BMS PCBA)	
	Operating Range: -50°C to +71°C	



5Ah FTS/Pyro Li-Ion Pulse Current Performance

Battery Fast Charge Test


- Battery traditionally charged at C/2 per cell spec sheet and manufacturer recommendation
- Tested 2C "fast" charging with high current capability 5 Ah battery
- BMS includes autonomous charge cut-off functionality so man-in-the-loop is not required


5Ah battery reached 100% SoC from 50% SoC in 16 minutes

5Ah battery reached 100% SoC from 2% SoC in 30 minutes

5Ah LiPo Z Fold cell 1 Year Cycle Life Test in a Vacuum for LEO mission

- 30% Depth of Discharge (DOD)
- Cells charged at .5C (2.5 Amps) until reaching 4.1 Vdc
- Cells discharged at .5C (2.5 Amps) for 38 minutes
- Every 100 cycles, the cells internal Resistance was measured and full Capacity test performed from 4.2Vdc to 2.8Vdc

LEO Cycle Life Data Conclusion:

- Li-Ion Polymer NMC Cells have 3X Cycle Life of 18650 and ½ recharge time on-orbit that is a game changer for 6U to 27U CubeSat missions
- Low internal resistance of < 4mohm compared to ~ 60mohm for 18650
- 5Ah Cell is rated for 30C (150 Amps) continuous current and 50C (250 Amps, 1 sec) pulse current that if require high power on-orbit for payloads (SAR, etc.)

LiPo Z Fold NMC Cell 1 Year Cycle Life Test in a Vacuum for LEO mission

104.2 One year LEO orbit* 99.2 Projected capacity of 89% at 12000 cycles 1.8 94.2 city (Ah) 1.7 84.2 1.6 *Cell was charged at 0.5C until reaching 4.10Vdc. The cell was then discharged at 0.5C for 38 minutes 79.2 1.5 Projected capacity of 80% at 22000 cycles 14 74 7 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 Cycle Count

5 Ah Cell Vacuum Cycle Life Test Results

- 1-year long cycle test in vacuum (20-30% DOD, C/2 Charge and Discharge rate
- Vacuum pressure of 1 * 10-4 Torr
- Cycle regime imitated a small satellite in LEO (charge to 90%)
- Full capacity test every 100 cycles
- Total loss of 5.7% relative capacity throughout year test
- 6200 charge/discharge cycles
- Control cell in ambient had similar cycle life results

2Ah / 5 Ah Cells performed identically in Vacuum and in ambient conditions


Extrapolation cycle life estimate of 22,000 cycles prior to End of Life (80% Capacity)

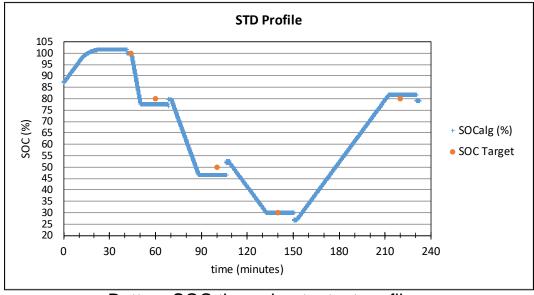
52Ah Li-Ion Polymer Intelli-Pack®

Power: 1539.2 Watt-hrs

Weight Estimate: 26.2 lbs Mil Alum 6061-T6 Enclosure

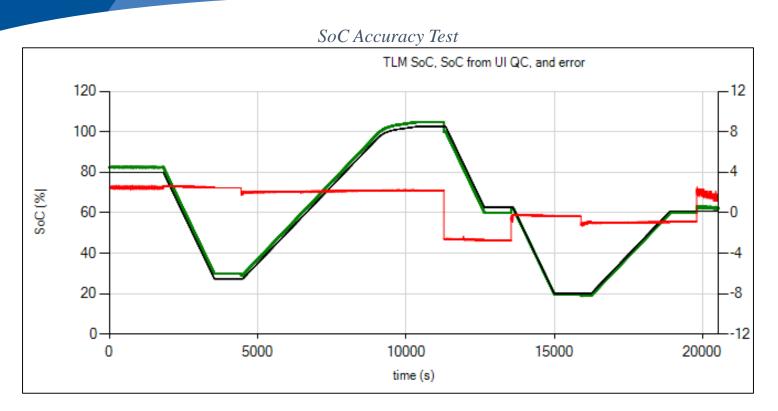
Battery	SIL 52 Ah 8S2P Li-Po Battery	
Specification		
Cell Chemistry	Ultra High Energy NMC Cell	
	243Wh/Kg	
Voltage Range (J1	33.6 – 22.4 Vdc	
and J2 Out)		
Capacity (BOL)	52 Ah at C/2 continuous discharge	
	50 Ah at 1C continuous discharge	
Cycle Life	25,000 Cycles to 80% capacity at C/2	
	discharge and charge, 20-30% DOD	
Estimated Weight	26.2 lbs	
Dimensions	14.0 inch (L) by 7.0 inch (W) by 5.5	
	inch (H)	
Steady State Load	104A (2C)	
Pulse Load	208A (4C), 10 Seconds	
Telemetry and	RS-422	
Monitoring	J1 and J2 Connectors	
Protection	Full cell protection, disabled in	
	Discharge Protection Override	
Operational Temp	$-10 \text{ to } +60^{\circ}\text{C} (+14 \text{ to } +140^{\circ}\text{F})$	
Range (no heater)		
Temp Range with	$-40 \text{ to } +60^{\circ}\text{C} (-40 \text{ to } +140^{\circ}\text{F})$	
Heaters		

52Ah Battery Random Vibration Testing at SIL



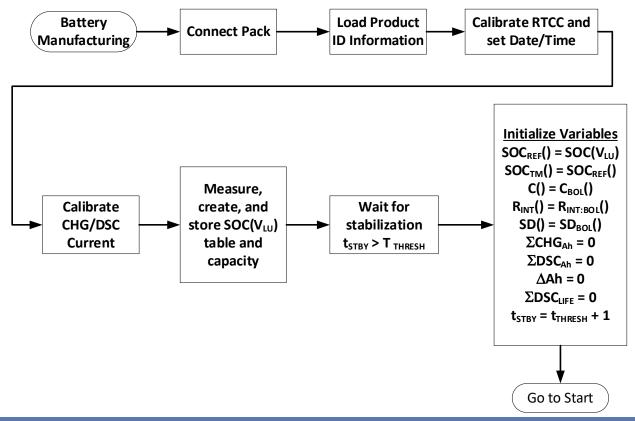
- Li-Ion Battery applications requiring mission and safety critical BMS design
- Functions of Intelligent BMS in Li-Ion Intelli-Pack® battery system (in general)
 - Monitor the individual series or parallel cells, and battery performance in real-time
 - Protections for Safety (overvoltage, undervoltage, short circuit, temperature, etc.)
 - On board SOC, SOH (Qc) and RUL Algorithms

State of Charge Algorithm Development

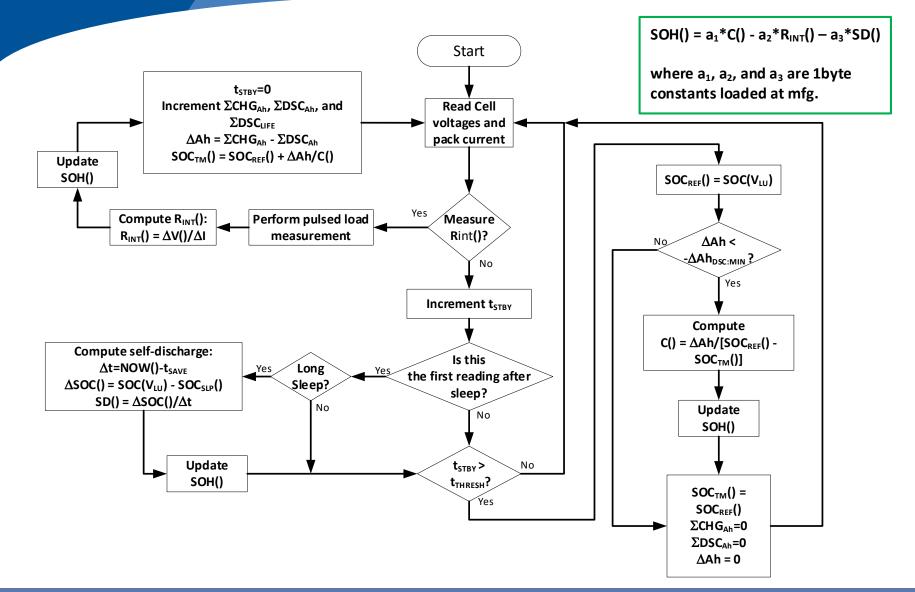

- Each BMS is calibrated during manufacturing
- Pack capacity and SOC as a function of Open Circuit Voltage is measured after the BMS is paired with the pack
- Real-time SOC is based on Coulomb counting
 - Look-up table is used to eliminate integration error
 - Systematic Long-term error is used to compute real-time capacity
- ±3% Accuracy based on testing to date

Battery SOC throughout a test profile

State of Charge Algorithm Test


- Microcontroller Based SoC algorithm via Amp-hour summation and calibrated lookup table
- ΔL tracks SoC and is computed as the accumulation of coulomb counting

Difference between SoC and expected never exceeded ±2.7%


SOH Algorithm: Initialization

- Implemented in Three Phases: Initialization, Operation, and Sleep
- Governing SOH Equation: $SOH(t) = a_1 * C(t) a_2 * R_{INT}(t) a_3 * SD(t)$
 - $-a_1, a_2, a_3$, are 1 byte constants determined for each individual battery and loaded after manufacturing

SOH Algorithm: Operation

Space Information Laboratories

Edmund Burke, President Huitian Lu, South Dakota State University Santa Maria, California Phone: 805-925-9010, Ext. #101 Cell: 805-720-2784

E-mail: edmund.burke@spaceinformationlabs.com www.spaceinformationlabs.com